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Abstract

Signal processing can be found in many applications and its primary goal is to provide underlying information on specific prob-
lems for the purpose of decision making. Traditional signal processing approaches assume the stationarity of signals, which in
practice is not often satisfied. Hence, time or frequency descriptions alone are insufficient to provide comprehensive information
about such signals. On the contrary, time–frequency analysis is more suitable for nonstationary signals. Therefore, this paper pro-
vides a status report of feature based signal processing in the time–frequency domain through an overview of recent contributions.
The feature considered here is energy concentration. The paper provides an analysis of several classes of feature extractors, i.e.,
time–frequency representations, and feature classifiers. The results of the literature review indicate that time–frequency domain
signal processing using energy concentration as a feature is a very powerful tool and has been utilized in numerous applications.
The expectation is that further research and applications of these algorithms will flourish in the near future.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Signal processing is often used for feature extraction and classification in medical disease diagnosis [1–3], in-
dustrial process control [4], fault detection [5], and many other fields. The primary goal of signal processing in the
aforementioned applications is to provide underlying information on specific problems for decision making [6]. These
techniques can be classified either as time, frequency or time–frequency domain based algorithms. At the classifica-
tion level, there also exist several different methodologies. Typical approaches along with sample features used in
extraction and classification are shown in Fig. 1. Understanding of the problem at hand is crucial in deciding which
framework to employ for feature analysis. Some features, such as amplitude levels in the time domain, are easily ex-
tracted and classified, but are susceptible to noise. Others, such as energy concentration in the time–frequency domain,
even though require more involved operations, can lead to more robust feature extraction and more accurate classifica-
tion. Furthermore, not every feature yields plausible conclusions. For example, in the analysis of heart sounds, which

* Corresponding author. Fax: +1 519 850 2436.
E-mail addresses: esejdic@ieee.org (E. Sejdić), igordj@cg.ac.yu (I. Djurović), jjiang@eng.uwo.ca (J. Jiang).

1 Current address: Bloorview Research Institute and the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto,
ON M5S 3G9, Canada.
1051-2004/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.dsp.2007.12.004
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Fig. 1. Signal processing for pattern classification in a typical application.

are nonstationary, the amplitude rarely provides conclusive information. The intensity of the recorded heart sounds is
affected by many factors, which are not necessarily pathological. On the other hand, the amplitude in the time domain
will provide sufficient information when considering control of the liquid level in a tank. Therefore, depending upon
whether the phenomenon under analysis is stationary or nonstationary, and on the nature of the desired feature, differ-
ent algorithms have to be used. The question is what signal processing algorithms should be used for feature analysis
in a given situation? The answer simply depends on a priori knowledge about the phenomenon under consideration.
Parametric signal processing algorithms can be used for feature extraction and classification if an accurate model of
the signal exists in a selected representation space [7]. However, such modeling techniques have limitations as well.
Modeling of nonstationary signals is more difficult and consistent parametric models often do not exist, except in very
few special cases, e.g., mono or multi component chirp signals [8]. Most of the signals encountered in practice do not
satisfy the stationarity conditions, which explains the growing interest in nonstationary signal processing.

1.1. Time–frequency analysis

Time–frequency analysis (TFA) is of great interest when the signal models are unavailable. In those cases, the time
or the frequency domain descriptions of a signal alone cannot provide comprehensive information for feature extrac-
tion and classification. The time domain lacks the frequency description of the signals. The Fourier transform of the
signal cannot depict how the spectral content of the signal changes with time, which is critical in many nonstationary
signals in practice. Hence, the time variable is introduced in the Fourier based analysis in order to provide a proper
description of the spectral content changes as a function of time. Therefore, the basic goal of the TFA is to determine
the energy concentration along the frequency axis at a given time instant, i.e., to search for joint time–frequency repre-
sentation of the signal [10]. In an ideal case, the time–frequency transform would provide direct information about the
frequency components occurring at any given time by combining the local information of an “instantaneous frequency
spectrum” with the global information of the temporal behaviour of the signal [11,12].

The time–frequency representations (TFRs) can be classified according to the analysis approaches. In the first
category, the signal is represented by time–frequency (TF) functions derived from translating, modulating and scaling
a basis function having a definite time and frequency localization. For a signal, x(t), the TFR is given by
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TFx(t,ω) =
+∞∫

−∞
x(τ)φ∗

t,ω(τ ) dτ = 〈x,φt,ω〉, (1)

where φt,ω represents the basis functions (also called the TF atoms) and ∗ represents the complex conjugate. The ba-
sis functions are assumed to be square integrable, φt,ω ∈ L2(R), i.e., they have finite energy [13]. Short-time Fourier
transform (STFT) [11], wavelets [13,14], and matching pursuit algorithms [13,15] are typical examples in this cate-
gory.

Cohen’s idea of time–frequency distributions (TFD), originally proposed in [16], represents the second category
of TFRs. This approach characterizes the TFR by a kernel function. The properties of the representation are reflected
by simple constraints on the kernel that produces the TFR with prescribed, desirable properties [10]. A mathematical
description of these TFRs can be given by

TFDx(t,ω) = 1

4π2

+∞∫
−∞

+∞∫
−∞
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−∞

x

(
u + 1

2
τ

)
x∗

(
u − 1

2
τ

)
φ(θ, τ )e−jθt−jτω+jθu dudτ dθ, (2)

where φ(θ, τ ) is a two-dimensional kernel function, determining the specific representation in this category, and
hence, the properties of the representation. Wigner distribution, Choi–Williams distribution, and spectrogram are
some of the methods commonly used for obtaining the TFDs [10].

Extensive review of TFRs and their properties is beyond the scope of this paper; however, an interested reader is
referred to the following excellent sources [11–14,17–38] for details.

1.2. Feature based signal processing and TFA

The main goal of the TFA of a signal is to determine the energy distribution along the frequency axis at each
time instant [10]. Effects of TF transforms on energy distribution are considered by using three sample signals:
x1(t)—a signal with four short transients; x2(t)—a linear chirp; and x3(t)—a signal with sinusoidally modulated
frequency. The TF domain representations of the signals are obtained by four different TFRs: STFT, S-transform [39],
S-method [51], and Wigner distribution (WD) as shown in Fig. 2.

Several observations can be made by comparing the respective TFRs. The STFT provides constant concentration
at all frequencies. The S-transform provides good concentration at lower frequencies, but poor concentration at higher
frequencies. The S-method provides overall good concentration at all frequencies, but it is nonivertible, which may
pose a problem if a synthesis of the entire or a part of the signal is required. The Wigner distribution suffers from
cross terms for multicomponent signals. Furthermore, this distribution may also suffer from inner interferences for
monocomponent signals as shown in Fig. 2o. These simple examples show that no single TFR can be ideal for
all possible applications. The choice of a particular TFR depends on specific applications at hand. However, the
TFA offers what other time or frequency techniques are unable to do. Simultaneous analysis of a signal in time
and frequency domains has proved to be the key to successful extraction and classification of signals with different
characteristics in numerous applications.

One of the simplest feature based signal processing procedures in TFA is via energy concentration. The idea is
to analyze behaviour of the energy distribution, i.e., the concentration of energy at certain time instant or certain
frequency band or more generally, in some particular time and frequency region. Such analysis is capable of revealing
more information about a particular phenomenon for diagnostic purposes. However, if the energy concentration in
the TF domain is used as a feature for extraction, classification and/or recognition, the following questions have
to be answered. For example, can enhanced concentration of the STFT be achieved? More generally, is it possible to
enhance the energy concentration in the TF domain for a variety of TFRs such that they resemble as closely as possible
to an ideal TFR? In addition, if the energy concentration in a certain TF band is used as a feature in a classification
process then how does one carry out the classification procedure? Should existing classification techniques be used?
Or should new classification schemes be developed which rely strictly on the TFR? The rest of this paper provides
a literature overview on the development in the field of feature based signal processing in the TF domain, and also
provides some answers to the above questions.

Two research streams prevail in the literature as shown in Fig. 3. The first stream relies on enhancement of the
energy concentration in the TF domain. The idea is that the properly optimized energy concentration will simplify
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Fig. 2. Sample TFRs: (a) x1(t); (b) x2(t); (c) x3(t); (d) STFT of x1(t); (e) STFT of x2(t); (f) STFT of x3(t); (g) S-transform of x1(t); (h) S-trans-
form of x2(t); (i) S-transform of x3(t); (j) S-method of x1(t); (k) S-method of x2(t); (l) S-method of x3(t); (m) WD of x1(t); (n) WD of x2(t);
(o) WD of x3(t).

Fig. 3. Overview of feature extraction and classification procedures based on the energy concentration in the TF domain.
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the decision-making process. From a pattern recognition point of view, this approach essentially means increasing
the resolution of the feature extractor. The second stream deals with the development of new classification schemes
relying on TFR of the signal. For example, it has been shown that the accuracy of a correlation based classifier can be
enhanced if certain pre-processing of the signal is carried out.

1.3. Organization of the paper

This paper has been divided into six sections. Section 2 provides an overview of the TF algorithms relevant to
the scope of this paper. These algorithms have appeared in the literature dating back to 1990’s. Earlier developments
of the TF techniques have been reviewed in excellent papers by Cohen [20] and Hlawatsch et al. [23]. Section 3
provides a review of the classification schemes based on TFRs. An application example is shown in Section 4, where
the accuracy of instantaneous frequency (IF) estimation for different TFRs is examined. General remarks and future
directions regarding the feature analysis based on the energy concentration in the TF domain are presented in Section 5.
Conclusions are drawn in Section 6 followed by an extensive list of references.

A reader should keep in mind of the followings while reading this paper: First, the paper provides an overview of
algorithms for only one-dimensional signals. The overview of the algorithms based on the artificial intelligence meth-
ods or multidimensional signals (i.e., images) is beyond the current scope. Second, some of the algorithms considered
herein have previously been reviewed, mostly in the form of edited books. For the sake of completeness, they are still
included.

2. TFR as a feature extractor

Signal processing using energy concentration as a feature in the TF domain essentially consists of evaluating a
TFR of the given signal. If the energy concentration in the TFR is closer to that of the ideal TFR, more likely it will
produce more accurate classification results. Hence, a lot of research has focused on how to obtain more concentrated
energy distribution.

Research activities reported in the literature can be summarized in the following four aspects: The first two deal
with the development of new TFRs based on either signal decomposition or Cohen’s idea. The third relies on so-
called rotated TFRs, in which the TF plane is rotated to a certain angle in order to align the analysis axis with the
signal components. The fourth relates to the signal optimized transform. A possible approach in obtaining the signal
optimized transform is to employ a concentration measure in order to optimize the behaviour of a parameter. For
example, the window length in the short-time Fourier transform can be optimized for every signal in order to achieve
higher energy concentration [113]. Another approach to signal optimized transform is to design the TF transform
optimized for classification. For example, the kernel of the transform is directly optimized in the TF domain to yield
a classifier with a higher accuracy [114]. Even though the TFA represents a clear framework for the analysis of the
energy concentration in time and frequency domains, there are still some problems as outlined by sample examples in
the previous section. This section provides an overview of these approaches with emphasis on recent developments.

2.1. Signal decomposition based TFRs

The signal decomposition based TFRs are often used to describe energy concentration since they do not have cross
term issues as those TFRs based on Cohen’s idea. Cross terms can cause problems at the classification stages. The
methods for decomposition range from classical such as STFT, wavelet transform to some newer methods such as:

– multiresolution Fourier transform (MFT) [40]:

φt,ω(τ ) = √
sh

(
s(τ − t)

)
exp(−jωτ), (3)

where h(·) is a window function and s is the scale similar to one used in the wavelet analysis;
– S-transform [39]:

φt,ω(τ ) = h
(
τ − t, σ (ω)

)
exp(−jωτ), (4)

where h(·) is a Gaussian window function and σ(ω) is the standard deviation of the Gaussian window;
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Table 1
Properties of the signal decomposition techniques for representing energy concentration in the TF domain

Method Advantages Disadvantages

STFT Very simple for implementation Constant window width limits time–frequency resolution

Wavelet analysis Variable resolution Does not maintain the absolute phase of the signal
components. A scale to frequency conversion is dependent
on a mother wavelet

MFT Variable resolution. Absolute phase of each component is
maintained

Complex requirements for the window function. Choice of
scale might require oversampling

S-transform Variable resolution. Absolute phase of each component is
maintained

Single window function

STHRT Good energy concentration obtained for the harmonic signals ϕu(τ) has to be known or precisely estimated

STHT Easy for hardware implementation Same disadvantages as STFT

– short-time harmonic transform (STHRT) [41,42]:

φt,ω(τ ) = h(t − τ)ϕ(1)
u (τ ) exp

(−jωϕu(τ)
)
, (5)

where ϕu(τ), known as the unit phase function, is the phase function of the fundamental divided by its nominal
IF and ϕ

(1)
u (τ ) is the first-order derivative of ϕu(τ);

– short-time Hartley transform (STHT) [43]:

φt,ω(τ ) = h(t − τ) cas(ωτ), (6)

where cas(·) = cos(·) + sin(·).

It should be mentioned that the S-transform can be considered a special case of the MFT with the Gaussian window.
In fact, the S-transform adds a constraint by restricting the window width of MFT. Because MFT is a function of three
independent variables, it becomes difficult to be used as a tool for analysis [44].

Some properties of these techniques are summarized in Table 1. The choice of a feature extractor, i.e., the TFR,
depends on an application. Different techniques have unique properties.

A hyperbolic FM signal, x(t) = exp(j20π ln(11|t | + 1)), is used to examine the effects of a variable window
width over a constant window. The signal is analyzed with STFT and the S-transform. The TFRs are shown in
Figs. 4a and 4b. The S-transform provides a more concentrated representation than the STFT does due to the fact
that the window for the S-transform is wider at lower frequencies and narrower at higher frequencies. However,
the S-transform does not always yield satisfactory results as depicted in Figs. 2e and 2h, where higher energy con-
centration for the linear FM signal is achieved with the STFT. The advantage of the TFA of the harmonic signal,
x(t) = exp(j2π(10t + 5t2)) + exp(j2π(20t + 5t2)) + exp(j2π(30t + 5t2)), with the STHRT over the STFT is de-
picted in Figs. 4c and 4d. These graphs represent TFRs of sample harmonic signal which consists of three linear FM
signals. The STHRT yields a higher concentration in comparison to the STFT for the harmonic signals as expected.
Furthermore, the STHRT provides a localized impulse-train spectrum for signals that are comprised of time-varying
harmonics. However, a severe limitation for this transform is that φu(τ) has to be known in advance. Otherwise, an
exhaustive search procedure is required to determine the unit phase function [42].

Hardware implementation of most signal decomposition based techniques requires separate implementation for
the forward and backward transforms. This may add to the cost of the implementation [43]. However, for STHT, any
hardware built to compute the forward transform can be used for the inverse transform without any modification,
because the Hartley transform kernel is the same for both the forward and the backward transforms.

Some shortcomings identified in Table 1 have been addressed in the literature. A generalized S-transform is intro-
duced to allow greater control over the window function. This generalization also allows nonsymmetric windows to be
used [45,46]. Several window functions are considered including two forms of exponential functions, amplitude and
phase modulations by cosine functions, a bi-Gaussian window [47], a complex phase function [48], and a subclass of
complex windows [49]. The bi-Gaussian window is introduced to resolve time resolution associated with the Gaussian
window. The long front tapers of the Gaussian window degrade the time resolution of event onsets [47]. By joining
two nonsymmetric half-Gaussian windows, this problem can be resolved. The phase and the amplitude modulation
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Fig. 4. A comparison of four signal decomposition techniques based TFRs: (a) STFT of a sample hyperbolic signal; (b) S-transform of a sample
hyperbolic signal; (c) STFT of a sample harmonic signal; (d) STHRT of a sample harmonic signal.

resolve the issue for complex windows which could produce a misleading amplitude spectrum in the TF domain.
Unless corrected by proper modulation, the complex windows can produce an IF in the TF domain that is not equal to
the true IF [48,49]. The solution to the problem of the constant window width associated with the STHT is proposed
in the form of a Hartley S-transform. The Hartley S-transform introduces a variable window width framework for the
Hartley analysis [50]. However, only one window function is introduced as for the Fourier S-transform.

2.2. Feature representation based on Cohen’s class of TFR

A lot of research has been done for feature representation and extraction based on Cohen’s TFR. Many significant
contributions have been made and some are listed below. The attractiveness of these representations is based on the
fact that, when cross terms and inner interferences are minimized, these transforms can produce very high resolution
representations. A classical example is a TFA of a linear FM signal as shown in Fig. 2. The energy concentration ob-
tained by Wigner distribution is significantly higher than the concentrations obtained by the STFT or the S-transform.

The problems with feature extractors based on Cohen’s class are cross terms and inner interferences, which can
lead to the ambiguous representation of a signal in the TF domain. Hence, most of the research conducted in this
area attempts to reduce the effects of cross terms. The classification accuracy is significantly diminished by the cross
terms, especially for multicomponent signals. The cross terms can be reduced or eliminated by introducing a kernel
function φ(θ, τ ). To show how different kernels can reduce the effects of the cross terms, let’s rewrite Cohen’s class
of the TFRs in terms of the ambiguity function, A(θ, τ ). The ambiguity function is defined as [10]

A(θ, τ ) =
+∞∫

x

(
u + 1

2
τ

)
x∗

(
u − 1

2
τ

)
ejθu du (7)
−∞
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and the Cohen’s class can then be rewritten as

TFDx(t,ω) = 1

4π2

+∞∫
−∞

+∞∫
−∞

A(θ, τ )φ(θ, τ )e−jθt−jτω dτ dθ. (8)

This reformulation provides an easier understanding of the auto and cross terms location. The ambiguity function
can be considered as a joint TF autocorrelation function. All auto terms are located along and around the ambiguity
domain axis, and hence the maximum occurs around the origin. For the nonoverlaping components, the cross terms
are dislocated further from the axis [23].

The framework of reduced interference distribution (RID), introduced in [52,53], summarizes the efforts of differ-
ent kernels. Kernels are designed in the ambiguity domain as low-pass filters to suppress and eliminate the efforts of
cross terms, and to obtain the desired properties of the TFRs. Some of the proposed distributions following the idea
of the RID class are listed below:

– Born–Jordan distribution [10] with

φ(θ, τ ) = sin(θτ/2)

θτ/2
. (9)

– Choi–Williams distribution [54] with

φ(θ, τ ) = exp

(
−θ2τ 2

σ 2

)
, (10)

where σ is a scaling factor.
– Zhang–Sato distribution [55] with

φ(θ, τ ) = exp

(
−θ2τ 2

σ 2

)
cos(2πβτ), (11)

where σ and β are parameters. For β = 0 a Choi–Williams distribution is obtained, since σ is defined in the same
manner as for the Choi–Williams distribution.

– Radial Butterworth distribution [56] with

φ(θ, τ ) = 1

1 + (
θ2+τ 2

r0

)M
, (12)

where r0 and M are adjustable parameters with constraints r0 �= 0 and M ∈ Z
+.

– Bessel distribution [57] with

φ(θ, τ ) = J1(2παθτ)

παθτ
, (13)

where J1 is the first kind Bessel function of order one and α > 0 is a scaling factor.
– Generalized exponential distribution [58,59]

φ(θ, τ ) = exp

(
−

(
θ

θ1

)2N(
τ

τ1

)2M
)

, (14)

where N , M are positive integers, and θ1, τ1 are positive frequency and time scaling constants, respectively,
chosen such that φ(θ1, τ1) = exp(−1).

– Multiform tiltable exponential distribution [60] with

φ(θ, τ ) = exp
{−π

[
μ2(τ/τ0, θ/θ0, α, r, β, γ )

]λ}
, (15)

where

μ(τ/τ0, θ/θ0, α, r, β, γ ) = (τ/τ0)
2(θ/θ0)

2α + (τ/τ0)
2α(θ/θ0)

2 + 2r
{[

(τ/τ0)(θ/θ0)
]β}γ (16)
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and the parameters have the following properties: α is a nonnegative power, λ is a positive power, τ0 is a positive
time lag scaling constant, θ0 is a positive frequency lag scaling constant, r is a tilt or rotation given by r ∈ [−1,1],
and β and γ are coupled powers.

– S-method [51] with

φ(θ, τ ) = P

(
−θ

2

)
∗θ

+∞∫
−∞

w

(
u + τ

2

)
w∗

(
u − τ

2

)
exp(−jθu)du, (17)

where ∗θ represents a convolution in θ , P(θ) is a smoothing function and w(t) is a window function used for the
STFT.

– Distribution for multicomponent linear FM signals [61] with

φ(θ, τ ) = Π

(
θ − χτ

b

)
, (18)

where χ is a frequency modulation rate, b is the width in the direction of θ and Π(ξ) = 1 for |ξ | � 1/2.
– A time-lag kernel distribution [62]

φ(θ, τ ) = |τ |α 22α−1

Γ (2α)
Γ (α + jπθ)Γ (α − jπθ), (19)

where α is a bounded parameter such that 0 < α � 1, and Γ (z) is the Gamma function of z.
– Hyperbolic distribution [63]:

φ(θ, τ ) = 1

cosh(βθτ)
, (20)

where β is a parameter to control the exponential terms of the hyperbolic function.

Furthermore, two subclasses of RID based TFDs are also proposed for discrete signals [64,65]. The RID kernels
which can be implemented recursively are proposed in [64]. These kernels allow simultaneously recursive implemen-
tations of the local autocorrelation. In [65], high resolution kernels based on the Prony’s method are introduced.

It is important to mention that all the kernels presented above, except the kernel for the Born–Jordan distribution,
contain one or more adjustable parameters. This implies that for a given kernel the parameter(s) can be chosen such
that the resulting kernel produces a representation similar to a representation obtained by some other kernel with the
same number of parameters. Having the opportunity to “fine tune” the kernel generally represents an advantage for
feature extraction. In a given application, the kernel can be optimized to achieve maximal reduction of the cross term
effects. As an example, variations of some of the parameters for the kernel proposed in [60] are depicted in Fig. 5.
However, finding a proper value of the parameter(s), yielding the highest energy concentration in the TF domain, can
also represent an additional computational burden.

It should be mentioned that not every kernel can produce satisfactory results in all applications. Some kernels are
only proposed for certain specific classes of signals, such as the kernel defined by (18) [61]. In addition, it should be
noted that the Cohen’s class of representations can only achieve the ideal TFR of the signal if the IF of the signal is a
linear function (e.g., a linear FM signal) [66] as depicted in Fig. 2. If the IF variations are of higher order, no signal
independent distribution from Cohen’s class can produce the ideal representation [66]. Therefore, it is worthwhile to
mention the generalization of Cohen’s class representations proposed in the form of the L-class distributions [67–72] in
the context of feature extraction for signals with a higher order IF variation. These distributions represent higher order
representations, i.e., the order higher than second, with diminished inner interference effects and enhanced resolution
in comparison to the Cohen’s class. The problem of the cross terms becomes more profound. However, these cross
terms can be diminished or completely eliminated by careful recursive implementation of a L-class distribution by
using the STFT [67]. Some further improvements are proposed in the forms of a pseudo-quantum signal representation
[73], and a “complex time” TFD [74,75].

In addition to reducing the effects of cross terms, the kernels presented here have other properties on the resulting
TFRs. These properties are usually selected in advance by the designers. Furthermore, there exist design methods for
constructing new kernel functions with specific application oriented properties. A summary of some kernel design
methods is given in Table 2.
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Fig. 5. The tiltable, generalized exponential kernel for various values of parameters: (a) λ = 1/2, α = 1, r = 0, β = 1, γ = 1, τ0 = 200, θ0 = 0.2;
(b) λ = 1/2, α = 0.002, r = −1, β = 2, γ = 1/2, τ0 = 200, θ0 = 0.2; (c) λ = 8, α = 0, r = −0.75, β = 1, γ = 1, τ0 = 300, θ0 = 0.3; (d) λ = 1/2,
α = 0, r = −1.5, β = 2, γ = 1/2, τ0 = 200, θ0 = 0.2.

Table 2
Properties of the kernel design methods in the literature

Kernel design method Advantages Disadvantages

POCS method [76] Two or more design constraints can be satisfied
simultaneously

Constraints have to be chosen carefully, otherwise
questionable results may be obtained

Frequency transformation
method [77]

Produced kernels can have efficient cascade
implementation

Not every kernel produced by the FTM is amenable
to cascade filter implementation in the
time–frequency plane

Design via point and derivative
constraints [78]

Kernels with various constraints could be easily
constructed

Only applicable to discrete kernels. The design
procedure may yield a conflict between time and
frequency marginal properties

Kernels with desired auto-term
properties [79]

Kernel is optimized for the signal auto-term It has to be recalculated for every class of signals

Minimum variance kernels
[80,81]

Kernel satisfies the TF constraints and provides the
minimum variance for the power spectrum estimate
for the Gaussian white noise processes [80] or
additive circular complex white noise processes [81]

Only minimizes the average variance. The method is
optimal for noisy signals

2.3. Rotation of the TF plane

The feature extractors based on the rotation of the TF plane have been introduced to improve energy concentration
for signals whose components are not aligned with either the time or the frequency axis [82]. As an example, let us
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Fig. 6. Sample signal analysis with several TFRs: (a) time-domain representation of a sample signal consisting of 3 linear FM components; (b) Wig-
ner–Ville distribution of the sample signal; (c) STFT representation of the sample signal; (d) LPFT representation of the sample signal.

compare the TFRs obtained by the rotation of the TF plane with some standard approaches presented earlier, e.g.,
the STFT and Wigner distribution. Let us assume a sample signal consisting of three linear FM components. The
Wigner distribution (WD) is capable of achieving the ideal energy concentration of the linear FM signal as shown in
Fig. 2. However, in this case, the TFR obtained by WD suffers from the effects of cross terms as shown in Fig. 6b.
The advantage of the STFT in this case is that it does not contain cross terms. However, the energy concentration of
each component is severely degraded in comparison to the representation obtained by the Wigner distribution. The
TFR obtained by the local polynomial Fourier transform (LPFT) enhances the concentration of the components in
comparison to the STFT, and it does not contain any cross terms as shown in Fig. 6d.

The TFA based on the rotation of the TF plane can be achieved in several ways:

– Fractional Fourier transform (FRFT) [83–85]:

Fα(u) =

⎧⎪⎨
⎪⎩

√
1−j cotα

2π
ej

(
u2/2

)
cotα

∫ +∞
−∞ x(t)ej

(
t2/2

)
cotα−jut cscα dt, if α is not multiple of π,

x(t), if α is a multiple of 2π,

x(−t), if α + π is a multiple of 2π.

(21)

The standard Fourier transform is a special case of the FRFT with a rotation angle α = π/2.
– Local polynomial Fourier transform (LPFT) [86–90]:

LPFTx(t,ω) =
+∞∫

x(t + τ)w(τ) exp
(−jω1τ − jω2τ

2/2 − · · · − jωMτM/M
)
dτ, (22)
−∞



164 E. Sejdić et al. / Digital Signal Processing 19 (2009) 153–183
Table 3
Properties of the approaches for the rotation of the TF plane

Approach Advantages Disadvantages

FRFT Allows representation of a signal on the orthonormal basis
formed by chirps

cot(α) can take enormous values and oversampling may be needed
to satisfy the sampling theorem

LPFT Provides generalization of the FRFT to any order of the
polynomial IF

A drawback of the LPFT is the increase in dimensionality, i.e., an
increase of the calculation complexity

RWD Excellent for establishing the direction of the linear FM
modulated signal in the ambiguity plane

Not suitable for long data records, and the segmentation of such
records is needed. Analyzed in depth only for the WD

where ω = (ω1,ω2, . . . ,ωM). The LPFT enables one to estimate both the time-varying frequency and its deriva-
tives. The technique is based on fitting a local polynomial approximation of the frequency which implements a
high-order nonparametric regression.

– Radon–Wigner distribution (RWD) [91–94]:

RWD(r,ϑ) = R
[
WVx(t,ω)

] =
∫

WVx(t,ω0 + mt)dt |m=−1/ tan(ϑ);ω0=r/ sin(ϑ), (23)

where R[f (x, y)] = ∫
f (r cosϑ − s sinϑ; r sinϑ + s cosϑ)ds and r and s represent x- and y-axes rotated coun-

terclockwise by an angle ϑ.

Summary of some properties associated with these approaches is given in Table 3. It should be mentioned that
the FRFT corresponds to the rotation of a class of TFRs as along as Ψ (t, f ) = F −1

θ→t,τ→f {φ(θ, τ )} is rotational
symmetric [95]. The FRFT based TFRs also have marginals associated with them [96] in analogy to the TFRs based
on the standard Fourier transform.

Even though the RWD is considered a tool for the rotation of the TF plane at a certain angle, the RWD was
developed primarily for detection and classification of multicomponent linear FM signals in noise. This approach
reduces the task of tracking straight lines in the TF plane to locating the maxima in a 2-D plane. It is also interesting
to mention that the ambiguity function can be obtained as an inverse Fourier transform of the RWD.

The presented approaches for rotation of the TFRs are similar in principle. The relationship between FRFT and
RWD has been studied in [97], and it is shown that the Radon–Wigner distribution is the squared modulus of the
fractional Fourier transform:

RWD
[
x(t)

] = ∣∣FRFT
[
x(t)

]∣∣2
. (24)

To establish the relationship between the FRFT and the LPFT, the FRFT can be written as

Fα(u) =
√

1 − j cotα

2π
ej

(
u2/2

)
cotα

+∞∫
−∞

xw(τ)ej
(
τ 2/2

)
cotα−juτ cscα dτ, (25)

where xw(τ) = x(t + τ)w(τ). For M = 2, ω1 = u cscα, and ω2 = cotα in (22), Eq. (25) can be expressed in terms of
the LPFT as

Fα(u) =
√

1 − j cotα

2π
ej

(
u2/2

)
cotαLPFTx(t,ω1,ω2). (26)

From these equations it can be seen that the LPFT provides a broad generalization of the FRFT.
Several different feature extractors have been proposed using the rotated TF domain framework. A fractional-

Fourier-domain realization of the weighted Wigner distribution (i.e., S-method) [98] and of Gabor expansion [99–102]
are introduced in several publications. The LPFT is also implemented for a polynomial Wigner distribution [103], and
the extension to the L-Wigner distribution is presented in [104]. Several other generalizations to and modifications of
the rotated TFA are also proposed in the literature such as: unitary similarity transformations [105], a four-parameter
atomic decomposition of chirplets [106], joint fractional representations [107,108], generalization of the FRFT into
the linear canonical transform [109], and the tomography TF transform defined as the inverse Radon transform of
the FRFT [110]. Also, efficient algorithms to compute uniformly spaced samples of the Wigner distribution and the
ambiguity function located on arbitrary line segments are proposed in [111,112].
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2.4. Signal dependent TFRs

The feature extractors described in the previous sections deal with several concepts regarding the improvement of
energy concentration: reducing the effects of spectral leakage; diminishing the effects of cross terms; and aligning
the axis of analysis with the principal axis of the signal components. However, can a single feature extractor be
optimal for all signals? Unfortunately not, since a major drawback of all fixed mappings is that, for each mapping, the
resulting TFR is satisfactory only for a limited class of signals. Thus, the enhanced concentration in the TF domain
is desirable for a variety of classes of signals. Concentrated components generally overlap or interfere with other
nearby components as little as possible, and yield a “sharp” representation. The maximal concentration also implies
that components are confined as closely as possible to their proper support in the TF domain. Hence, this is why signal
dependent TFRs are important. It has to be mentioned that these techniques are generally nonlinear and nonquadratic
due to the nature of the computation process. In this subsection, an overview is provided only for signal dependent
representations, which are based on the two classes of the TFRs mentioned in the Introduction.

The signal dependent TFRs are available in several forms in the literature. These representations differ in their
adopted forms. They are based on:

– concentration measures [113–125]
– reassignment methods [126–129]
– signal optimized kernels/windows [130–143].

Some properties of each approach are summarized in Table 4.
The concentration measure approach examines the effects of certain parameter variations on the energy concentra-

tion of the signal in the TF domain. The parameter value yielding the highest energy concentration is chosen for the
signal dependent TFR. The development of the concentration measure can be divided into two groups based either on
the distribution norms or on the entropy of the distributions. The initial research in the development of the measures
based on the distribution norms has been carried out by Jones and Parks [113,115]. They proposed a measure based
on the STFT for signal concentration that allows the fully automated determination of the optimal basis parameters.
The concentration measure (CM) is given by

CM =
∫ +∞
−∞

∫ +∞
−∞ |STFT(t,ω)|4 dt dω

(
∫ +∞
−∞

∫ +∞
−∞ |STFT(t,ω)|2 dt dω)2

. (27)

The concentration measure in (27) favours those components with higher concentration. However, for multicomponent
signals, a local measure is required to determine the concentration of the dominant component at each location in the
TF domain. Equation (27) can be turned into a local concentration measure by multiplying the squared magnitude of
the short-time Fourier transform by a “localization weighting function” [116].

A solution to the problem in the Jones–Parks measure is proposed by Stanković. The concentration measure pro-
posed in [117] does not discriminate low concentrated components with respect to the highly concentrated ones within
the same distribution, and it is given by

CM =
(

N∑
k=1

N∑
n=1

|TFRx(n, k)|1/p

)p

, (28)

where TFRx(n, k) is a discrete version of any of the TFRs.
A different notion of the quantification of the TFR appeared in the literature around the same time as the Jones–

Parks measure. Williams et al. considered how the information measures, such as the Shannon or Rényi information
measure, could be used to provide information on TFDs [118]. The Shannon information measure is appropriate only
for positive TFRs. The Rényi measure conforms closely to the visually based notion of complexity when inspecting
TFRs and can be used for other TFRs [119]. For Cohen’s class of the TFRs, the Shannon information measure is given
as

H
(
TFx(t,ω)

) = −
+∞∫ +∞∫

TFx(t,ω) log2 TFx(t,ω)dt dω (29)
−∞ −∞
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Fig. 7. Several TFRs of a sample signal consisting of a linear FM component and sinusoidally modulated component: (a) spectrogram; (b) spectro-
gram according to the Stanković measure; (c) spectrogram according to the Jones–Parks measure; (d) spectrogram according to the Rényi entropy.

and the Rényi measure as

Rα

(
TFx(t,ω)

) = − 1

1 − α
log2

+∞∫
−∞

+∞∫
−∞

TFx(t,ω)dt dω, (30)

where α > 0, and the Shannon entropy is recovered as the limit of Rα , as α → 1. A detailed study of the properties and
some potential applications of the Rényi TF information measures, with emphasis on the mathematical foundations
for quadratic TFRs can be found in [122]. It should also be noted that the Rényi measure is sensitive to the amplitude
and phase variations in the signal components [120]. However, it has been shown that the expected value of the
third-order Rényi entropy has well defined upper and lower bounds in the presence of white noise [123]. Effects of
three concentration measures on the TFR of a signal consisting of a sinusoidally FM and linear FM components,
x(t) = exp(j20πt + j30πt2) + exp(j5π cos(4πt) + j150πt), are depicted in Fig. 7.

It is also necessary to mention a resolution performance measure [124,125]. The resolution performance measure
allows the design of high-resolution TFRs for multicomponent signals. However, this measure requires extensive
knowledge of the signal and representation attributes such as: the average amplitudes of the mainlobes; sidelobes;
cross terms; and the components relative frequency separation of any two consecutive components of multicomponent
signals. Thus, it may be difficult to implement in practice.

The energy concentration of the signal components in the TF domain is tackled from another perspective by a
so-called reassignment method. The reassignment method, initially proposed in [126] for a spectrogram, and later on,
generalized for any TF method in [127–129], creates a modified version of a representation by moving its values away
from where they are computed to produce a better localization of the signal components. In order to perform such an
operation, for each point in the TF plane, one calculates the center of gravity for the signal energy such as
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Table 4
Some properties of the approaches for obtaining signal dependent TFRs

Approach Advantages Disadvantages

Concentration
measure

Usually easy to implement. Good energy concentration
can be obtained

It has to be calculated for each signal

Reassignment
methods

Excellent energy concentration can be obtained Computationally expensive. Sensitive to noise

Signal optimized
kernels/windows

It does not need recalculation for every signal, but it is
rather based on class of signals

Needs careful implementation when working with signals in
noisy environment

t̂ (t,ω) = t −
∫ ∫

uTFR(t − u,ω − Ω)dudΩ∫ ∫
TFR(t − u,ω − Ω)dudΩ

, (31)

ω̂(t,ω) = ω −
∫ ∫

ΩTFR(t − u,ω − Ω)dudΩ∫ ∫
TFR(t − u,ω − Ω)dudΩ

. (32)

Given these centers of gravities, the reassigned TFR is obtained by

RTFR(t,ω) =
∫ ∫

TFR(τ, υ)δ
(
t − t̂ (τ, υ)

)
δ
(
ω − ω̂(τ, υ)

)
dτ dυ, (33)

where δ(t) is a Dirac function. However, it is noticed that the technique is highly sensitive to noise, and some modi-
fications to the original algorithm have been proposed [144–147]. The reassignment method is also computationally
expensive. A fast algorithm that allows the recursive evaluation of TFDs modified by the reassignment method is
introduced [148].

The first two approaches to signal dependent TFRs are based upon the fact that an optimized representation is
found for each new signal. Another stream of research in this area is based on the development of the signal depen-
dent kernels/windows for a class of signals through an optimization design procedure. The initial research has been
conducted for so-called radially Gaussian distributions [130,131]. The problem of finding the optimized kernel boils
down to finding the optimal σ(ψ) for radially Gaussian functions for the given signal. Therefore, the optimization
problem can be posed as

max
Φ

2π∫
0

+∞∫
0

|A(r,ψ)Φ(r,ψ)|2r dr dψ (34)

with a constraint that the energy of Φ(r,ψ) must be finite, where r = √
θ2 + τ 2 and A(r,ψ) is the ambiguity function

of the signal in the polar coordinates. The technique performs well in the presence of additive noise, which suggests
that it may prove useful for the automatic detection of unknown signals in noise. A generalization of the idea to any
other type of kernels is shown in [132], and in [134], where the kernel is further optimized locally for each signal
component. Computationally effective procedure for the optimal kernel design is given in [133], and a procedure
that adapts the kernel over time is presented in [135]. Similar approach based on the idea that the kernel should be
optimized for classification has been proposed in [114,137–142,149,150]. The idea is that once the kernel is optimized
to extract discriminant features among different classes, the classification process will yield more accurate results. The
optimal kernel for classification, Φ , is the solution as given below:

Φ̂(θ, τ ) = arg max
Φ

d(TFR1,TFR2), (35)

where d(TFR1,TFR2) is a distance between the two TFRs, TFR1 and TFR2 represent TFRs of two signals belonging
to different classes. Also a variety of distance measures can be implemented such as: Euclidian distance, correla-
tion, a broad family of dissimilarity measures that is given by the f -divergences (e.g., Kolmogorov distance and
Bhattacharyya distance) and the Lq distances based on the normalized TFRs.

While developing the signal optimized windows or kernels, it is important to mention that the bias and the variance
of the estimated signal parameters in the presence of noise is dependent on the window/kernel used [143]. Hence,
choosing appropriate parameters for the window/kernel is critical in order to achieve accurate estimation. In particular,
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Table 5
Different TFRs developed based on the signal dependent TFRs approaches

Approach TFR

Concentration measures Optimization of various TFDs [121,123,151–156]. Also signal dependent TFR analysis based on the
FRFT [157–159], the LPFT [160–163], and the Radon–Wigner transform [164]

Reassignment methods STFT, wavelet transform, pseudo Wigner distribution, smoothed pseudo Wigner distribution, RID
[126–129], S-method [165]

Signal dependent kernels or windows Signal dependent kernels/basis for various representations [166–171]. The optimal choice of the
window length based on the asymptotic formulae for the variance and bias is used for: the pseudo
Wigner distribution [172–175], L-Wigner distribution [176], robust M-periodogram [177], spectrogram
[178]

the optimal choice of the window size based on asymptotic formulas for the bias and the variance can resolve the bias-
variance trade-off usual for nonparametric estimation. However, in practice, such an optimal estimator is difficult to
implement because the optimal window size depends on the unknown smoothness of the IF. In [143] an algorithm is
presented, which determines a time-varying data-driven window size for local polynomial periodogram. The algorithm
is then able to provide an accurate estimate that is close to what can be achieved if the smoothness of the IF is known
in advance. The developed algorithm uses only the formulas for the variance of the estimate. This approach has also
been applied to other TFRs as shown in Table 5.

3. Signal classification/recognition based on energy concentration in the TF domain

In signal processing, linear or nonlinear transformations are used to enhance features for improved classifica-
tions [9]. The previous section discussed how to extract the energy concentration of signals in the TF domain.
Classification/recognition based on the extracted features will be discussed in this section. In situations where a sta-
tistical model (such as Gaussian distribution) is known, the optimal classification procedure can be developed. Often,
however, no statistical model is available. In these cases, the application of the optimal classifier would require an
estimation of the relevant probability density functions. Hence, a large set of signal realizations may be required for
learning purpose [6]. If the set is small, suboptimal procedures may have to be used. As pointed out in the Introduc-
tion, for the nonstationary signals it is necessary to use a model-free representation space in which the differences
between different features are emphasized and the similarities are de-emphasized [9].

3.1. TFA in classification process

TFR-based classification methods are preferred because TFRs have discriminant capabilities for signals belonging
to different signal classes. This situation is often encountered in practical applications [150]. Also, the main advantage
of the TF domain based classification is the flexibility to form the feature vector in 2D representations. The question
is how to perform classification/recognition based on energy concentration in the TF domain.

Before analyzing possible approaches, let’s consider sample energy concentration patterns depicted in Fig. 8. The
patterns represent phenomena, which are manifested through short duration transients. These patterns can be nonover-
lapping as shown in Figs. 8a–8c or overlapping as shown in Fig. 8d. The nonoverlapping patterns can be easily
classified through frequency or time domain filtering. However, what happens if the two sample patterns are overlap-
ping in frequency and time domain, such as Fig. 8d? Classification of such patterns becomes more involved either
in frequency or time domain alone. In such a situation, the energy concentration in the TF domain can effectively be
used as the feature for classification purpose. The classification based on energy distribution in the TF domain can be
performed in two ways:

– by visual inspection of the patterns in the TF domain;
– by development of classification schemes.

It has been shown in [179–229] that the differences amongst different patterns can be best revealed in the TF
domain. However, in some cases the differences are not always obvious with all the feature extractors presented. For
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Fig. 8. Illustrative pattern scenarios in the TF domain: (a) patterns occupying the same time band; (b) patterns occupying the same frequency bands;
(c) patterns partly occupying the same frequency band, but not intersecting; (d) patterns overlaping on some time and frequency bands.

example, in the analysis of some heart sounds, it has been noticed that the S-transform provides visual representation
emphasizing the morphological differences amongst the sounds with a sharper time–frequency concentration than the
STFT or the continuous wavelet analysis [192,203]. Does it mean that the S-transform is the optimal feature extractor
for heart sounds? Not necessarily, since some feature extractors from Cohen’s class can also provide a sharp TF
concentration of the same sounds, if the effects of the cross terms are eliminated [229]. In addition to the choice of a
suitable feature extractor, this approach has other limitations. First, it is not an automated decision process. It relies
on human expertise, and also requires some initial training to recognize the differences among patterns. Furthermore,
consecutive classifications require human intervention. Hence, they are difficult to be implemented as a stand alone
software/hardware product. Needless to say, such a decision process is prone to human errors.

The second approach to feature classification relies on an automated feature classifier, which makes independent
decisions. Such a classifier makes the decision based on features represented in terms of energy concentration. The
decision making process is usually based on statistical differences among patterns [230–256] or distance measures
among patterns [257–262]. The statistical differences among patterns can be measured in several ways such as corre-
lation [248,256], linear discriminant analysis [241], mutual information [242], to name a few. It should noted that the
choice of a feature extractor can have significant influence on the final results: some are better, and some are worse
[248,256]. The implementation of distance measures as feature classifiers can be viewed as a mathematical extension
of the classification based on visual inspection. The extracted patterns are simply classified based on the “distances”
from the given templates for different classes. The choice of feature extractor is spread across the spectrum of the
extractors presented in Section 2, such that the signal decomposition based TFRs [259,261] Cohen’s TFRs [258–260,
262] and the signal dependent TFRs [257] can all be used.

Feature classification based on statistical differences or distance measures can be seen as a favourable approach.
A logical question is which of these classifiers can lead to the most accurate results. The answer is rather difficult
as the accuracy depends on applications. Choosing an effective template often requires familiarity with the problem.
Also, accuracy depends on the choice of feature extractor used.

References sorted according to different fields of applications, which use the energy concentration in the TF domain
as features are summarized in Table 6. The columns represent the four types of feature extractors. It is interesting to
note that some feature extractors such as the rotated TFRs have limited fields of applications.

An example with two simple templates is used to show the advantage of the TF based classifiers over their time
domain counterparts. The time domain and the TF domain representations of the templates are depicted in Fig. 9. The
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Table 6
References sorted according to applications and feature extractors used

Application Signal decomposition
TFR

Cohen’s TFR Rotated TFR Signal dependent TFR

Biomedical signal analysis [182–184,192,195,197,
200,202,203,210,225,227,
231,235,248–252]

[179–181,185,186,190,
191,193,206,229,232,258]

[196,208,239,242,257]

Mechanical signal analysis [188,189,198,204,207,
209,220–222,226,228,
236,255,261]

[205,214–216,220,233] [194,212,223]

Power systems analysis [213,240,243,244] [218,262]

Speech and music processing [254,259] [247,259] [241,259]

Radar and sonar signal processing [201,217,230] [187,199,211,238,245,
253,260]

[219,246]

templates have identical low frequency content. The transients present in the signal denote two different phenomena,
which are desired to be classified. TF boundaries of the transient parts are given by T1 = {(t,ω): t ∈ [0.54,0.6],ω ∈
[120π,180π]} and T2 = {(t,ω): t ∈ [0.55,0.65],ω ∈ [100π,160π]}, respectively. Furthermore, each phenomenon
consists of three short duration sinusoids with frequencies within the frequency boundaries defined by the templates.

Unknown signals are generated with equal probability of belonging to either class. These signals have the same
low frequency content as the templates. The frequencies of the three short duration sinusoids are generated with
uniform probability for the given sets. The signals are classified with the time-domain based Euclidean distance and
the TF domain based Euclidean distance [257]. The distances between the signals and templates are calculated. The
classification is done based on the shortest distance between the signals and the respective templates. An error rate,
defined as the incorrect classification of the unknown signal, is calculated for 10,000 trials. The results show that the
time domain classification produces an error rate of approximately 33%. The TF classifier produces an error rate of
approximately 11%, which is three times smaller than the time domain classifier.

4. Feature extraction error analysis: An application example of if estimation

It is well known that the choice of a feature extractor affects the classification accuracy. The effects can be as simple
as a limited resolution obtained by a representation, but can be as complicated as nonlinearities of IF of a signal. To
diminish these effects different representations have been introduced as shown throughout Section 2. However, the
question still is how accurately a representation can extract energy concentration. The answer to this question lies in
the error introduced by the extractor in the classification process. Therefore, it is desirable to understand the estimation
error introduced by a TFR in order to approximate the minimum classifier resolution.

The rest of this section provides a description of an approach that examines the extraction accuracy of TFRs. The
focus is on the IF estimation based on the maximum of energy concentration. However, for the sake of completeness,
a quick overview of other TF based estimation methods is given as well. Interested readers should refer to [263,264]
for details.

4.1. Estimation of IF using TFA

In some applications, the accurate estimation of the maximum of energy concentration is important for two reasons.
First, it is well known that the location of the maximum energy concentration in the TF domain corresponds to the IF
of a signal [10]. Second, the IF can be used as a mean to classify different phenomena (e.g., [239]).

The problem of estimating the IF using the TF techniques has been studied extensively in past years [69,89,143,
172,173,175,176,178,265–307]. The IF can be estimated as a first moment of the TFR

ω(t) =
∫ +∞
−∞ ωTFx(t,ω)dω∫ +∞
−∞ TFx(t,ω)dω

(36)

or based on the position of the maximum value of the energy concentration in the TF domain as
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Fig. 9. Time domain and the TF domain representations of two templates: (a) time domain representation of the first template; (b) time domain
representation of the second template; (c) TFR of the first template; (d) TFR of the second template.

ω(t) = arg max
ω

[∣∣TFx(t,ω)
∣∣]. (37)

The first moment provides an unbiased estimate of the IF of a signal [268,276]. The presence of additive noise leads
to the serious degradation of the first moment estimate. It may have a high statistical variance even at high values of
input SNR [269]. The first moment estimate is not affected by the multiplicative noise [300]. The maximum value
estimate is greatly affected by the multiplicative noise when the power spectral density of the noise has a maximum
at a frequency other than DC [300].

The maximum value estimate is hence used for the signals contaminated with the additive noise. It is based on the
detection of a distribution maxima positions. This estimate is also prone to some estimation errors. The sources of
estimation error are:

– bias;
– random deviation of the maxima within the auto-term caused by a small noise;
– large random deviations due to false maxima detection outside the auto-term caused by a high noise.

In [172], authors have developed an approach to examine effects of the first two estimation errors for signals contami-
nated with the additive noise. They showed that the estimator bias and variance are highly signal dependent. Also, the
bias generally caused by the IF nonlinearity is proportional to a power of the lag window length. The variance caused
by the noise is a decreasing function of the lag window length. Thus, the bias-to-variance trade-off exists, producing
the minimal mean squared error. The effects of large random deviation due to false maxima detection outside the auto-
term caused by the high noise are considered in [289,304]. This error occurs when some points outside the signals’
auto-term surpass values inside the auto-term, due to the influence of a relatively high noise. It has been shown that
this kind of error, when it appears, dominates over other sources of error.
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The approach based on the examination of the estimation error due to bias and random deviations within auto-term
has also been used to examine the IF estimator based on the maximum of the energy concentration for various TFRs
such as the L-Wigner distribution [176], spectrogram [294], reduced interference distributions, the L-class, and signal-
dependent optimal TFRs [297], shift covariant class of quadratic TFDs [302], the S-method [301]. This approach is
also extended to a combination of multiplicative and additive noise for pseudo Wigner–Ville distribution [291], and
similar results are obtained. However, when the standard deviation of the multiplicative noise is larger than its mean,
the noise can deteriorate the phase of the signal significantly making the use of TF techniques difficult [286].

5. Remarks and future perspectives

This paper provides an overview of methods dealing with energy concentration in the TF domain. The scope of
the paper is restricted to only the methods that are based on analytical algorithms, that is, artificial intelligence based
algorithms have not been considered for space reasons.

The theoretical developments behind the different extractors are comprehensive. Based on the reviewed literature it
is difficult to foresee major contributions changing the field drastically in years to come. Our expectation is that most
of the focus will be given to higher order representations briefly mentioned in Section 2.2. These transformations
provide high concentration representations of the signals with higher order IF modulations. Their significance will be
especially pronounced in fields like spectroscopy, radar signal analysis, optics, and biomedical signal processing in
years to come.

On the contrary to feature extraction, feature classification in the TF domain still lacks comprehensive devel-
opment. The variety of practical problems requiring different classification approaches limits the development of a
unifying classification framework. For example, a classifier performing well in one application may not necessarily
provide good results in another. However, at least for similar problems stemming from different applications fields
comprehensive studies should be carried out to compare different existing classification approaches. In such a way,
some benchmark performances can be established against which future contributions can be compared.

An expansion of TF methods in different applications are expected to dominate the future contributions. Let us refer
back to Table 6. The classical methods based on signal decomposition approaches and Cohen’s class are widely used
in different application fields. However, it is interesting to note the rare applications of rotated and signal dependent
TFRs. It does not necessarily mean that such representations do not provide valid results. For example, it is expected
to see increased application of rotated TFRs in speech and music processing, biomedical signal processing and me-
chanical vibrations analysis. Some problems stemming from such applications actually require the employment of
such advanced TF transforms. Similar situations can be seen for signal dependent representations.

6. Conclusions

The TFA provides a powerful framework for the extraction and classification of nonstationary phenomena in signals
as shown in this paper. This paper summarized research results using energy concentration as a feature in the TF
domain in a period from early 1990s until now.

Choice of feature extractors in the TF domain, and the feature classifier is highly application-dependent. There is
no single TFR that can be claimed to be “the optimal” for all applications. It can be concluded that:

– Signal decomposition based TFRs are implemented in applications when it is not desirable to deal with the
cross terms imposed by TFRs that are based on Cohen’s idea. The STFT and the wavelet analysis, even though
widely applied, do have limitations. Some newer techniques such as the S-transform, the MFT, the STHT or the
STHRT provide a framework which enables an improved concentration of the signals in comparison to standard
techniques.

– Feature extractors based on Cohen’s idea are more suitable when high resolution representation of the feature is
required. However, the implementation has to be carefully considered. The kernel function should be optimized
for the given application in order to diminish the effects of cross terms. This kernel optimization process can
represent an additional computational burden, which is an addition to that of signal decomposition techniques.

– The rotation of the TF plane is used to ensure that the principal axis of the analysis is aligned with the principal
axis of the signal components. Several approaches have been introduced to implement such rotation: fractional
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Fourier transform, linear polynomial Fourier transform and Radon–Wigner distribution. It has been shown that
the Radon–Wigner distribution corresponds to the magnitude square of the FRFT of the signal, while the LPFT is
a broad generalization of the FRFT.

– Signal dependent TFRs overcome potential shortcomings of fixed mapping representations, which can yield opti-
mized representations only for limited classes of signals. These signal dependent representations can yield higher
energy concentration for wider variety of signals. Furthermore, these representations have higher computation
cost associated with them. Signal dependent representations can be realized in several ways.

Signal classification using the energy concentration in the TF domain as features is a well researched area, and
based on the work of this paper, the following can be concluded:

– TF based classifiers are more accurate than time- or frequency-domain based classifiers.
– TF based classification can be performed either by the visual inspection of energy concentration patterns, or by

automated processes relying on the measures of distances between the signals and the corresponding template.

As an application example, the framework for the IF estimation error analysis based on the maximum energy
concentration is examined as well. Such a framework is important for applications using the IF in the classification of
different phenomena.

This paper provides a concise summary of the work in this field in recent years. The results indicate that the TF
domain signal processing using energy concentration as a feature is a very powerful tool and has been applied to many
fields of applications. It is expected that further research and applications of existing schemes will flourish in the near
future.
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[68] LJ. Stanković, A method for improved distribution concentration in the time-frequency analysis of multicomponent signals using the L-

Wigner distribution, IEEE Trans. Signal Process. 43 (5) (1995) 1262–1268.
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[166] B. Ristić, B. Boashash, Kernel design for time-frequency signal analysis using the Radon transform, IEEE Trans. Signal Process. 41 (5)

(1993) 1996–2008.
[167] N.S. Rao, P.S. Moharir, A signal-dependent evolution kernel for Cohen class time-frequency distributions, Digital Signal Process. 8 (3)

(1998) 158–165.
[168] Y. Zhang, M. Amin, G. Frazer, High-resolution time-frequency distributions for manoeuvring target detection in over-the-horizon radars,

IEE Proc. Radar Sonar Navig. 150 (4) (2003) 299–304.
[169] Q. Jiang, S.S. Goh, Z. Lin, Local discriminant time-frequency atoms for signal classification, Signal Process. 72 (1) (1999) 47–52.
[170] A. Papandreou-Suppappola, S.B. Suppappola, Analysis and classification of time-varying signals with multiple time-frequency structures,

IEEE Signal Process. Lett. 9 (3) (2002) 92–95.
[171] L.-K. Shark, C. Yu, Design of matched wavelets based on generalized Mexican-hat function, Mech. Syst. Signal Process. 86 (7) (2006)

1451–1469.
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[174] LJ. Stanković, V. Katkovnik, Wigner distribution of noisy signals with adaptive time-frequency varying window, IEEE Trans. Signal Process.

47 (4) (1999) 1099–1108.
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[248] E. Sejdić, J. Jiang, Comparative study of three time-frequency representations with applications to a novel correlation method, in: Proc. of
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 2, Montréal, Canada, May 17–21, 2004,
pp. 633–636.

[249] S.M. Debbal, F. Bereksi-Reguig, Analysis of the second heart sound using continuous wavelet transform, J. Med. Eng. Technol. 28 (5) (2004)
151–156.

[250] T. Wang, J. Deng, B. He, Classification of motor imagery EEG patterns and their topographic representation, in: Proc. of 26th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, San Francisco, USA, September 1–5, 2004,
pp. 4359–4362.

[251] W. Wang, J. Pan, H. Lian, Decomposition and analysis of the second heart sound based on the matching pursuit method, in: Proc. of 7th
International Conference on Signal Processing (ICSP 2004), vol. 3, Beijing, China, August/September 31–4, 2004, pp. 2229– 2232.

[252] A. Bernjak, A. Stefanovska, V. Urbančič-Rovan, K. Ažman-Juvan, Quantitative assessment of oscillatory components in blood circulation:
classification of the effect of aging, diabetes, and acute myocardial infarction, in: Proc. of SPIE Conference on Advanced Biomedical and
Clinical Diagnostic Systems III, vol. 5692, San Jose, CA, USA, January 23, 2005, pp. 163–173.

[253] H.C. Strifors, T. Andersson, D. Axelsson, G.C. Gaunaurd, A method for classifying underground targets and simultaneously estimating
their burial conditions, in: Proc. of SPIE Conference on Automatic Target Recognition XV, vol. 5807, Orlando, FL, USA, March 29, 2005,
pp. 112–121.

[254] Y. Amit, A. Koloydenko, P. Niyogi, Robust acoustic object detection, J. Acoust. Soc. Am. 118 (4) (2005) 2634–2648.
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